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Abstract. Transmission matrix (TM) allows light control through complex media, such as multimode fibers
(MMFs), gaining great attention in areas, such as biophotonics, over the past decade. Efforts have been
taken to retrieve a complex-valued TM directly from intensity measurements with several representative
phase-retrieval algorithms, which still see limitations of slow or suboptimum recovery, especially under
noisy environments. Here, we propose a modified nonconvex optimization approach. Through numerical
evaluations, it shows that the optimum focusing efficiency is approached with less running time or
sampling ratio. The comparative tests under different signal-to-noise levels further indicate its improved
robustness. Experimentally, the superior focusing performance of our algorithm is collectively validated by
single- and multispot focusing; especially with a sampling ratio of 8, it achieves a 93.6% efficiency of the
gold-standard holography method. Based on the recovered TM, image transmission through an MMF is
realized with high fidelity. Due to parallel operation and GPU acceleration, our nonconvex approach
retrieves a 8685 × 1024 TM (sampling ratio is 8) with 42.3 s on average on a regular computer. The
proposed method provides optimum efficiency and fast execution for TM retrieval that avoids the need for
an external reference beam, which will facilitate applications of deep-tissue optical imaging, manipulation,
and treatment.
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1 Introduction
Different from ordinary ballistic optics, light propagation in
complex media is highly disordered1,2 due to the multiple scat-
tering occurring in these media, such as biological tissues or
mode dispersion in multimode fiber (MMF). Finding an order out
of such disorders has been long pursued. Over the past decade,

enormous progress has been made via wavefront shaping3–8

and especially the transmission-matrix (TM) method9–13 in
controlling light to focus and image through complex media.
The TM of a disordered medium describes the complex
output responses for an arbitrary point-source input, which
is regarded as the transfer function of the medium under
the shift-invariance assumption.11 The measurement of TM
offers a versatile tool to control light delivery in spite of
scattering,6,10 as well as recovering object information from
acquired speckle patterns.14,15 The TM method has spurred a
wide range of MMF-based applications, such as focusing,16,17
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glare suppression,18,19 endoscopic imaging,20–23 manipulation,24

optogenetics,25 and communication.14,26,27

TM measurement of a scattering medium was first intro-
duced by Popoff et al.9,10 using coaxial holography with an
internal reference. Since then, various forms of TM measure-
ment have been developed. Typically, the TM is measured by
recording the complex output fields under a sequence of input
modulations. The modulation basis is usually orthogonal, which
can be of diverse forms, including the Hadamard matrix,9,10

the Fourier-transform matrix,28 point source,29,30 and random
phase.13 Regardless of the form, the measured TM relates
all input modes to each output mode by linear superposition.
Depending on the type of input modulation and output mea-
surement, the TM could be complex-valued,9,30 real-valued,31,32

or even binary.33 Among them, complex TM is used most,
as it supports both amplitude and phase modulation of light,
which, however, usually entails holographic setup. Off-axis
holography based on either phase shifting34 or spatial filtering35

can acquire the complex TM accurately. Nevertheless, effective
off-axis interferometry with an additional reference beam and the
high system stability it demands could be impractical in some
scenarios. As an example, the coherence length of pulse laser
could be too short to use for interferometry-based TM
measurement. With coaxial holography, the above issues might
be alleviated, but the dark-spot problem with the measured TM
caused by speckle reference field36 is still unsatisfying.

Recent efforts have been made to accurately retrieve the
complex TM from intensity-only measurements using
advanced phase-retrieval algorithms,13,28,37–43 which started with
a Bayesian inference approach [i.e., phase retrieval Variational
Bayes Expectation-Maximization (prVBEM)].13 This was
followed by variants of approximating message passing (AMP)
algorithm such as phase retrieval Swept AMP (prSAMP)37 and
phase retrieval Vector AMP (prVAMP).38 Although robust to
noise, a prior knowledge of noise statistics is a must for these
approaches. Semidefinite programming (SDP) that uses convex
relations has also been introduced for solving the TM retrieval
problem,39 but it usually requires N ln N (N is the input size)
measurements and tends to be computationally inefficient. In
addition, works based on the extended Kalman filter (EKF)40

or the generalized Gerchberg–Saxton (GGS) algorithm41 claim
retrieving TM with measurements could be enough. That said,
EKF is computationally burdened and hard for parallelization.
GGS is efficient in computation, but its performance is still
suboptimum in real practice. Most recently, the area also sees
the birth of a smoothed Gerchberg–Saxton algorithm43 and a
nonlinear optimization method28 for TM retrieval.

To overcome the aforementioned limitations, in this study,
a state-of-the-art nonconvex optimization approach is adopted
and modified for TM retrieval with optimum performance.
Compared with existing TM retrieval algorithms, the proposed
nonconvex method can achieve optimal efficiency numerically
with less running time or sampling ratio. In the experiment, by
focus scanning across the field-of-view of an MMF with the
acquired TM, the performance of the proposed method is vali-
dated to approach the gold standard (i.e., off-axis holography)
with a sampling ratio of 8. Moreover, with the assistance of par-
allel operation and GPU acceleration, multiple rows of TM can be
recovered rapidly. Our method for TM retrieval is featured with
optimum efficiency and fast implementation in a reference-less
and robust setting, which holds potential for many deep-tissue
imaging and focusing applications with the usage of MMF.

2 Methods

2.1 Formulation of the TM Retrieval Problem

The theoretical model of retrieving a TM under a sequence of
input modulations is formulated as follows. Suppose the number
of discrete modulation units (i.e., input size) and speckle field
pixels (i.e., output size) is N and M, respectively. Given P
calibration patterns such that the probe matrix X ∈ CN×P and
the amplitude measurements Y ∈ RM×Pþ , the TM A ∈ CM×N

that needs to be estimated as follows:

Y ¼ jAXj; (1)

where j · j takes the absolute value for the elements inside. By
taking the conjugate transpose of both sides of Eq. (1), we have

YH ¼ jXHAHj; (2)

where ð·ÞH is the element-wise conjugate transpose operator.
Column-wisely, YH ¼ ½y1;…; yi;…; yM�, where yi ∈ RPþ con-
stitutes the measurements associated with the i’s output mode,
and AH ¼ ½a1;…; ai;…; aM�, where ai ∈ CN denotes the con-
jugate transpose of the i’th row of TM, i ¼ 1;…;M. In this
case, the TM retrieval problem is decomposed into M indepen-
dent subproblems given as

yi ¼ jXHaij; i ¼ 1;…;M: (3)

Due to the operation of taking absolute values in Eq. (3), the
above problem of estimating one row of TM is nonlinear and
falls in the category of phase retrieval.

The phase-retrieval problem has been studied intensively in
mathematics, as it is commonly encountered in practice, with
representative algorithms including alternating projection44

(e.g., Gerchberg–Saxton and Fineup), SDP45 (e.g., PhaseLift,
PhaseMax, PhaseCut), approximate message passing (e.g.,
Generalized AMP46 and Vector AMP47), and nonconvex
optimization.48–52 Among these methods, nonconvex approaches
are proven to be superior and have been developed rapidly in
recent years. There are mainly two categories of nonconvex ap-
proaches: the intensity-flow49,53 and amplitude-flow models,50–52

with the latter being better in both empirical success rate and
convergence property. In particular, the amplitude-flow models
have been proven to converge linearly to the true solution under
OðnÞ Gaussian measurements for a signal with dimension n.52

2.2 Modified Reweighted Amplitude Flow Algorithm

Herein, the cutting-edge reweighted amplitude-flow (RAF)
algorithm52 is adopted for the TM retrieval problem. Solving
Eq. (3) can be recast as an optimization problem,

min
ai∈CN

LðaiÞ ¼ kjXHaij − yik22; (4)

where k · k2 denotes the L2 norm of a vector, and LðaiÞ is
an amplitude-based least square error (LSE) loss function.
While most nonconvex algorithms contain two stages (i.e.,
spectral initialization and gradient descent), RAF applies
reweighting techniques in both stages that accelerates the
signal recovery significantly. Considering Eq. (4), the signal
[i.e., one row of TM a (the row index i is omitted for generic-
ity)] is first estimated with the weighted maximum correlation
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initialization. A subset of the row vectors in the probe
matrix (XH ¼ ½xH1 ;…; xHp �) that correspond to the jSj (subset
S ⊂ f1;…; Pg) largest entries in the measurements y ¼
fyjg1≤j≤P are selected, which are called direction vectors,
as they are more correlated to the true signal. The signal can
be estimated by maximizing its correlation to the direction
vectors fxHj jj ∈ Sg such that

max
kak¼1

1

jSj
X
j∈S

jhxHj ; aij2 ¼ max
kak¼1

aH
�

1

jSj
X
j∈S

xjxHj

�
a: (5)

By weighting more to the selected xHj vectors corresponding to
larger yj values with the weights yαj , ∀ j ∈ S (exponent
α ¼ 0.5, by default), the solution ã0 of Eq. (5) is the unit-norm
principle eigenvector of the Hermitian matrix,

H ¼ 1

jSj
X
j∈S

yαjxjx
H
j ¼ 1

jSjX · diagðỹα1; ỹα2 ;…; ỹαpÞ · XH; (6)

where ỹαj ¼ f y
α
j ; j ∈ S
0; otherwise

. ã0 is then scaled to obtain the

signal initial guess a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

P
j¼1 y

2
j∕P

q
· ã0.

The initialized signal a0 is further refined by reweighted
“gradient-like” iterations. The gradient of the LSE loss in Eq. (4)
with respect to a is

∇LðaÞ ¼ 1

P
· X

�
XHa − y ∘

XHa
jXHaj

�
; (7)

where ∘ denotes element-wise multiplication. Let t be the iteration
index; then the gradient descent is described as

atþ1 ¼ at − μ · ∇LðatÞ; (8)

where μ is the step size, and t ¼ 0,1;…. One can reweight the
gradients in Eq. (7) that have larger values of jXHatj⊘y (⊘ rep-
resents element-wise division), which are deemed more reliable
in directing to the true signal. The adaptive weight vector is

w ¼ jXHatj⊘ðjXHatj þ βyÞ; (9)

where β is a preselected parameter. The above descriptions show
the reweighted gradient flow for TM retrieval.

Inspired by Ref. 41, herein we modify the gradient-descent
process of the original RAF algorithm, which is divided into
two steps. In Step 1, the normalized measurement vector y is
replaced with its square y2 for gradient computation, which
enlarges the gradient and functions as the artificial heat data.
In Step 2, the amplitude measurement y is still used. Step 1 con-
tains the first two-thirds of total iterations, which is set empiri-
cally (the rationale is referred to in Appendix A). The modified
algorithm is simple, yet surprisingly effective, which is named
RAF 2-1 and shown to reduce the measurement error to a much
lower level than the original RAF (see Appendix B). The
pseudo-code of retrieving one row of TM with RAF 2-1 is
summarized in Algorithm 1. The time complexity for spectral
initialization and gradient iteration in Algorithm 1 is OðNjSjÞ
(with the adaptaion of power method or Lanczos algorithm)52

and OðNPÞ (usually P⩾N), respectively, so that the total time
complexity is (at least) OðN2Þ for retrieving a TM row. Luckily,
multiple rows of TM can easily be retrieved in a parallel way.

3 Results

3.1 Numerical Evaluation

Numerical evaluations are conducted at first to assess the effi-
ciency of the proposed RAF 2-1, with comparisons with several
representative TM retrieval algorithms, including the pioneering
prVBEM and the recent GGS 2-1, which outperforms previous
ones. Note that all algorithms involved are adjusted to function at
their best status, and the comparisons among them are under the
same conditions as explained below. Unless otherwise specified,
all the following simulations are conducted using a computer with
an Intel Xeon CPU (3.50 GHz, 6 cores) and 64 GB RAM in the
environment of MATLAB 2022a. For each algorithm, the perfor-
mance is evaluated by the efficiency of focusing with the retrieved
TM, which is indicated by the peak-to-background ratio (PBR).
This is performed by taking the conjugate of one TM row to con-
struct the phase mask for focusing light onto the corresponding
position. The TM is modeled using the speckle field produced by
random phase mask with zero padding in the Fourier domain,
whose elements obeyed a circular Gaussian distribution.
According to Ref. 3, the theoretical PBR of focusing is linearly
proportional to the input size N, as given by

η ¼ π

4
ðN − 1Þ þ 1: (10)

The focusing efficiency that a certain TM retrieval algorithm can
achieve is typically determined by the iterations (or the running
time) it has taken and the sampling ratio (γ ¼ P∕N).

Figure 1(a) shows the schematic diagram of TM retrieval
for an MMF. We first examined the focusing performance of

Algorithm 1 RAF 2-1 for retrieving a TM row a ∈ CN .

1: Input: Data y ∈ RPþ with fy jg1≤j≤P ;X ∈ CN×P ; number of
iterations T ; step size μ ¼ 3 and weighting parameter β ¼ 5;
subset cardinality jSj ¼ b3P∕13c, and exponent α ¼ 0.5.

2: Construct S to include indices associated with the jSj
largest entries among fy jg1≤j≤P .

3: Initialization: Let a0≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

P
j y2

j ∕P
q

· ã0 where ã0 is the unit-
norm principle eigenvector of the Hermitian matrix

H≔
1
jSjX · diagðỹα

1; ỹ
α
2;…; ỹα

P Þ · XH ;

where ỹα
j :¼

�
yα
j ; j ∈ S
0; otherwise

.

4: Gradient-descent loop

Step 1: for t ¼ 0 to b23T c − 1 do

atþ1 ¼ at −
μ

P
· X

�
w ∘

�
XHat − y2 ∘

XHat

jXHat j
��

Step 2: for t ¼ b23T c to T − 1 do

atþ1 ¼ at −
μ

P
· X

�
w ∘

�
XHat − y ∘

XHat

jXHat j
��

where w≔jXHat j⊘ðjXHat j þ βyÞ.
5: Output: a.
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different TM retrieval algorithms under a range of running times
when the sampling ratio was fixed to be γ ¼ 4. The input phase
mask had a size of 24 × 24. A total of 20 × 20 foci were pro-
duced sequentially that corresponded to 400 rows of TM to be
retrieved, with the mean PBRs of the foci as the focusing PBR.
The focusing PBR is further normalized by the theoretical value
to obtain the focusing efficiency. Figure 1(b) shows the average
focusing efficiency achieved by different methods with a run-
ning time ranging from 1 to 60 s based on 30 repeated tests.
It can be seen RAF 2-1 reaches the optimum efficiency after
running for ∼8 s, while GGS 2-1 requires quite longer running
time (∼40 s) and prVBEM cannot fully approach the optimum
within 60 s. This indicates our nonconvex method is superior in
algorithm convergence, given the same condition. Figure 1(c)
additionally shows the number of iterations versus running
times, which reveals the seconds per iteration for prVBEM,
GGS 2-1, and RAF 2-1 are roughly 5:1:1 in such a case. Hence,
the nonconvex approach is at least as highly efficient as GGS 2-1
in computation time, and both are much better than prVBEM.

The influence of sampling ratio was also explored for TM
retrieval algorithms, by fixing the running time to be 20 s when
N ¼ 576. As shown in Fig. 1(d), the focusing efficiency is close
to 0 for all algorithms when γ ¼ 1, which increases dramatically
starting from γ ¼ 2 for RAF 2-1 and GGS 2-1. Higher focusing
efficiency can be achieved with a larger γ for a TM retrieval
algorithm, since more measurements taken per degree of free-
dom in the signal allows for more accurate recovery. Obviously,
our RAF 2-1 outperforms its competing peers as it averagely

realizes more than 95% efficiency when γ ¼ 3 and 100% when
γ ¼ 4. By comparison, GGS 2-1 requires a sampling ratio of 5,
while prVBEM requires 7 for the optimal performance under
the same conditions.

Since data acquisition is inevitably contaminated with noise
(mostly signal-dependent) in practice, a good noise robustness is
highly preferred for a TM retrieval algorithm. Thus, the algo-
rithm performances were also evaluated under a range of signal-
to-noise (SNR) levels using simulated noisy measurements.
In the simulation, a multiplicative noise is added to the output
field intensity I ∈ RPþ. The SNR is defined as

SNR ¼ hIi∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðε − hεiÞ2i

q
; (11)

where ε ¼ Inoise − I, which denotes the noise vector, Inoise is
the noisy measurement vector, and h·i takes the average for
the elements inside. For the focusing results of multiple foci,
uniformity is an important metric to measure the focus quality.
The focusing uniformity (μ) is given as

u ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðIk − hIkiÞ2i

q
∕hIki; k ∈ K; (12)

where K is a set of the indices of foci. With parameter settings
that N ¼ 1024, γ ¼ 5, and a running time of 50 s, the results of
focusing efficiency and uniformity of 400 foci produced using
various TM retrieval algorithms are shown in Figs. 2(a) and

(a) (b)

(c) (d)

Fig. 1 Theoretical comparisons of TM retrieval performances of prVBEM, GGS 2-1, and our
RAF 2-1. (a) Schematic diagram of TM retrieval for an MMF. (b) Focusing efficiency achieved
by different algorithms under a range of running times when N ¼ 576 and γ ¼ 4. (c) The iterations
taken by different algorithms versus running times for the case of (b). (d) Focusing efficiency
achieved by different algorithms under a range of γ when using N ¼ 576 and a running time of
20 s. Note the error bars denote the standard deviations of 30 repeated tests.
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2(b). Note the original RAF was also included to highlight the
improved antinoise capability by our modification. It is found that
a maximum improvement of 15.5% and 32.4% in terms of focus-
ing efficiency can be realized by RAF 2-1 over RAF andGGS 2-1,
respectively, when the SNR is relatively low (e.g., no more than
3.1). Such a performance advantage of RAF 2-1 over other algo-
rithms weaken as the SNR increases, and the focusing efficiency is
almost the same when the SNR is about 15. This explains why
RAF was excluded in the previous noiseless tests. Besides, an ob-
vious improvement of focusing uniformity is achieved by RAF
2-1, which is at best 25.2% and 60.1% higher than those of
RAF and GGS 2-1, respectively, when the SNR is 1.92. The ad-
vantage of RAF 2-1 over RAF becomes minor when the SNR is
large, while it still sees ∼9% improvement than that of GGS 2-1.
Overall, algorithm performance in both focusing efficiency and
uniformity follows the order: RAF 2-1 > RAF > GGS 2-1 >
prVBEM. The difference between GGS 2-1 and RAF is relatively
small, whereas prVBEM falls behind GGS 2-1 considerably.

3.2 Experiment

The experimental configuration for retrieving the TM of an
MMF is shown in Fig. 3. A beam from a 532 nm continuous-
wave laser (EXLSR-532-300-CDRH, Spectra Physics) was ex-
panded by a 40× objective lens and collimated by a lens (L1).
The linearly polarized beam was then modulated into circular
polaarization by a quarter-wave plate (λ∕4) before impinging
onto a digital micromirror device (DMD, DLP9500, Texas
Instruments Inc.). Based on the Lee hologram technique, the
DMD, combined with a 4f system composed of L2, iris, and
L3, allowed for phase modulation at a high-speed pattern rate
of up to 23 kHz, rendering fast data acquisition for TM calibra-
tion. The phase-encoded and shrunk beam was subsequently
coupled into an MMF of 0.22 numerical aperture (NA) and
diameter of 105 μm (SUH105, Xinrui, China) by a collimator
(C1). The transmitted light was also imaged with a collimator
(C2). The beam then passed through a lens (L4) for convergence
and a polarizer before being captured by a CMOS camera (BFS-
U3-04S2M, FLIR). For TM retrieval, there was a sequence of
speckle intensity measurements under the input modulations of
random phase.

In the experiment, the performances of using different TM
retrieval algorithms to control light delivery despite scattering

were compared from the aspects of single-spot and multispot
focusing through MMF. For single-spot focusing, a total of
20 × 20 foci were generated sequentially on the working plane
of the MMF, which meant 400 rows of TM were to be retrieved.
The sampling ratio was set to be 5 for all algorithms to ensure
the quality of TM retrieval, given that the acquired speckle data
suffered from noises such as shot noise, dark current noise, and
readout noise. Figure 4(a) presents the histogram distribution of
the normalized PBRs of 400 foci achieved with different algo-
rithms. Since the experimentally acquired TM of the MMF also
obeyed the circular Gaussian distribution, it could be reasonable
to use Eq. (10) for normalizing the focus PBRs generated by
the MMF and calculating the focusing efficiency. It can be seen
that the average focusing efficiency (denoted by the crosses in
the box plots) are 16.45%, 26.01%, 37.46%, and 55.17% for
prVBEM, GGS 2-1, RAF, and RAF 2-1, respectively. These
results correspond well to the simulated ones with the same
parameter settings and under low SNR [see Fig. 2(a)]. Also note
for GGS 2-1, the median of the focus PBRs is much lower than

(a) (b)

Fig. 2 Simulated (a) focusing efficiency and (b) focusing uniformity achieved by prVBEM, GGS 2-1,
RAF, and RAF 2-1 under different SNR levels when using N ¼ 1024, γ ¼ 5, and a running time of
50 s. Note the error bars denote the standard deviations of 30 repeated tests.

Fig. 3 Experimental configuration for retrieving the TM of an MMF
with speckle-intensity measurements. CW: continuous wave; C,
collimator; DMD, digital mirror device; L, lens; P, polarizer; MMF,
multimode fiber; Obj, objective lens; λ∕4, quarter-wave plate.
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the mean because of the poor focusing uniformity. According to
the box plots of Fig. 4(a), quite a few foci approached or even
surpassed the theoretical PBR for GGS 2-1, RAF, and especially
RAF 2-1. However, their overall focusing efficiency of 400
different foci on the working plane of MMF still saw a distance
from the ideal level, using the retrieved TMs when γ ¼ 5. The
fact that RAF 2-1 achieved a considerably higher efficiency than
RAF and other algorithms confirms the noisy conditions in a
real environment, which may originate from many sources, such
as camera noise, imperfect fiber coupling, and other aberrations
in the optical path.

In addition to single-spot focusing, a multispot focusing
experiment was also conducted under the same conditions. This
was achieved by superposing multiple phase-conjugate rows
of the retrieved TM to construct a phase mask. The results of
light focusing onto a pentagram pattern composed of 20 spots
by different algorithms are shown in Fig. 4(b). The focusing
uniformity were 33.7%, −17.6%, 40.0%, and 69.2%, respec-
tively, for the four algorithms. It can be observed that only
RAF 2-1 produced a high-quality pentagram pattern by focusing
light on all the preselected positions, due to its superior perfor-
mance of TM retrieval.

The accuracy of TM retrieval by our RAF 2-1 was further
compared with the off-axis holography, the gold standard for
the measurement of TM. To do so, we scanned the whole fiber
region on the working plane of the MMF, so that a map of the
focusing PBR could be synthesized, which was used to fully
evaluate the accuracy of TM. The fiber region was determined
by identifying the largest connected region in the binarized im-
age taken when all pixels on the DMD were turned on. Using
circular fitting of the fiber region, the center and radius of the
fiber region were obtained, which were then used to create a
binary mask of the fiber region. In the experiment, there were
8685 pixels inside the circular fiber region of the 140 × 140 out-
put field, which correspond to 8685 rows of TM to be retrieved.
Figure 5 summarizes the results of focusing PBR maps with the
TM measured by off-axis holography and the TMs retrieved by

RAF 2-1 under a range of γ from 3 to 8. The mean PBR by the
gold standard method is 608.4. Compared with the theoretical
PBR (i.e., η ¼ 804), it is reasonable, given that the focusing
quality degraded in the fiber fringe area due to the inhomo-
geneous mode excitation inside the MMF. As for RAF 2-1, there
are many dark spots in the PBR map synthesized under small γ,
indicating poor accuracy of the corresponding rows of TM being
retrieved. With a larger γ, the PBR map becomes more homo-
geneous with fewer dark spots, which means an overall im-
provement of the TM accuracy. Notably, when γ ¼ 8, the
PBR map by RAF 2-1 is comparable to that of the holography,
with a mean PBR of 569.4 reaching ∼93.6% efficiency of the
gold standard experimentally. In practice, the choice of the sam-
pling ratio should strike a balance between the computing costs
and the expected focusing performance with the recovered TM.
Compared to off-axis holography, the key advantage of RAF 2-1
is the elimination of reference beam and interferometry, which is
compatible with more applications. In addition, with parallel
operation and GPU implementation, the TM retrieval process
by RAF 2-1 was fast enough. For example, under γ ¼ 8, retriev-
ing an 8685 × 1024 TM by RAF 2-1 took 42.3 s on average
when using a computer with an Intel Xeon CPU E5-1650 v3
@3.50 GHz, an NVIDIA RTX2080 Ti GPU, and 128 GB RAM.

Using the retrieved TM by RAF 2-1, one can further recon-
struct an input object from intensity-only speckle measurement
with one more phase retrieval. The reconstruction result relies
heavily on the quality of the recovered TM, which acts as the
measurement matrix. Figure 6(a) shows the results of recon-
structing a 32 × 32 phase object of the Chinese character
“光” (meaning “light”), by taking 100 iterations with the TM
of MMF retrieved by RAF 2-1 when γ was increased from
3 to 8. The Pearson correlation coefficient (PCC) is used to
quantify the fidelity between the reconstructed image IR and
the ground truth IG, which is given as

PCC ¼ hðIR − hIRiÞðIG − hIGiÞi
hðIR − hIRiÞ2ihðIG − hIGiÞ2i

: (13)

(a)
(b)

(d) (e)

(c)

Fig. 4 Comparison of light-focusing results through MMF with the TMs retrieved by different
algorithms. (a) The histograms of normalized PBR of 20 × 20 foci and (b) the results of multispot
focusing (pentagram) in the output field of MMF, both obtained by prVBEM, GGS 2-1, RAF, and
RAF 2-1 with N ¼ 1024 and γ ¼ 5. Note the crosses in (a) represent the mean values, and the
white dashed circles in (b) show the fiber region. The scale bar in (b)–(e) is 20 μm.
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The curves of the PCC under different cases of γ are also
provided in Fig. 6(b). The upsurges of PCCs at the 67th iteration
confirm that the signal recovery is significantly boosted after the
gradient heating in the first two-thirds of iterations. The final
PCCs are: 0.02, 0.16, 0.65, 0.74, 0.78, and 0.80 for γ ¼ 3, 4,
5, 6, 7, and 8, respectively. As can be observed, the recon-
structed image could be recognized starting from γ ¼ 5 and
attains the best quality when γ ¼ 8. Nonetheless, there is still
speckle background noise among the images [Fig. 6(a)], which
is common in the reported empirical speckle-imaging results
with the TM method,14,38 mainly because of the imperfect
fidelity of the recovered TM. The reconstruction quality can be
further improved with a larger γ to overcome the influence of
noise. To summarize, image transmission through the MMF is
demonstrated with the proposed nonconvex approach, which
further validates the effectiveness of the TM retrieved.

4 Discussion and Conclusion
There have been various phase-retrieval algorithms used for
solving the TM retrieval problem, as introduced earlier. RAF,
as one of the best in the nonconvex family, has been reported
previously54 to be highly competitive for image restoration from
speckle measurement. To the best of our knowledge, we first
adopted it for nonholographic calibration of TM.42 More impor-
tantly, our modified version, RAF 2-1, with an additional step of
gradient heating, has shown remarkable improvement in the
robustness against noise and the TM retrieval accuracy in both
simulations and experiments. The numerical evaluation of
RAF and RAF 2-1 can be further seen in Appendix B. Besides
the above modification, we resort to speeding up the conver-
gence of RAF for TM retrieval. Efforts include employing adap-
tive step size in the gradient-descent process or other gradient

(b)(a)

Fig. 6 Comparison of image transmission results through MMF using the retrieved TMs by RAF 2-1
under a range of γ with N ¼ 1024. (a) Normalized reconstructed images for an object of the
Chinese character “光” with the values of PCC to the object labeled. (b) The progression curves
of PCC during the iterative reconstruction.

(a)

(b)

Fig. 5 Comparison of the PBR maps of focusing on the working plane of the MMF using the TMs
(a) measured by off-axis holography and (b) retrieved by RAF 2-1 under a range of γ withN ¼ 1024.
The scale bar in (a) and (b) is 20 μm.
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acceleration schemes, such as limited memory-BFGS (L-BFGS)55

and nonlinear conjugate gradient (NCG)56 methods. However,
the improvements are not very impressive, with details referred
to in Appendix C.

There are also several limitations to the study. In the exper-
imental setup, the MMF output field was relayed by a collimator
instead of an objective lens. Consequently, the working plane
of the MMF was immovable, which had a certain distance
(about tens of micrometers) away from the fiber end. That
said, the setup was sufficient for retrieving a reliable TM and
focusing on the working plane for demonstration. An objective
lens is needed only for measuring the TMs corresponding
to different working planes. In addition, since there is phase
ambiguity for the formulated LSE objective function in
Eq. (4), a phase offset exists for each row of the retrieved TM.
However, it does not affect the intensity of the generated two-
dimensional foci. Further phase correction28 is indispensable
when it comes to MMF three-dimensional volumetric focusing
and imaging.

In conclusion, we have proposed a modified nonconvex
approach, RAF 2-1, for retrieving the TM of MMF based
on speckle-intensity measurements. Theoretically, RAF 2-1
can achieve optimum focusing efficiency with less running
time or sampling ratio than the previously reported TM
retrieval methods. The experimental results of light control
through an MMF confirm a comparable performance of RAF
2-1 to the gold-standard holography method for TM measure-
ment. RAF 2-1 is also computationally efficient, taking 42.3 s
on average to recover a 8685 × 1024 TM (γ ¼ 8) on a regular
computer under parallel operation and GPU implementation.
Endowed with the advantages of optimum efficiency, fast
execution, and a reference-less setup, RAF 2-1 allows for
broad applications in MMF-based imaging, manipulation, treat-
ment, etc.

5 Appendix A: Best Iteration Ratio for the
Two-Step Gradient Iteration Process of
RAF 2-1

There are two steps in the gradient iteration process regarding
the proposed RAF 2-1. In order to determine the number of iter-
ations in steps 1 and 2 (with the total number fixed) for the best
performance, numerical experiments were conducted to com-
pare the focusing efficiency achieved by RAF 2-1 under a series
of iteration ratios. Moreover, since GGS 2-1 also involved the
two-step gradient descent, it inspires this work and is used for
performance comparison. Therefore, the best ratio of iteration
of GGS should also be determined. Figure 7 gives the results
of both RAF 2-1 and GGS 2-1, with a total iteration of 300.
It can be observed for RAF 2-1, there are minor differences of
focusing efficiency among different iteration ratios, while the
one at two-thirds is chosen as the best iteration ratio due to a
slight advantage. As for GGS 2-1, the best focusing efficiency
is around an iteration ratio of 9∕10, which is also consistent
with the original research that adopted 287 and 34 iterations in
steps 1 and 2 for GGS 2-1, respectively.

6 Appendix B: Numerical Evaluation of
RAF and RAF 2-1

As mentioned in Sec. 2, the modified version, RAF 2-1, is more
effective for TM retrieval. To evaluate how the performance of

RAF 2-1 is better than the original RAF, a numerical experiment
in a noiseless condition was performed for retrieving the TM
that corresponds to 400 output modes. The curves of the aver-
aged errors after normalization are presented in Fig. 8. The mea-
surement error for the i’th row of TM is defined as

errori ¼ kjXHâij − yik22; i ¼ 1;…; 400; (14)

where âi is the estimate of the i’th row of TM and other nota-
tions are with the same meaning as in Sec. 2. It can be observed
that the error of RAF 2-1 can finally decline to a level of as low
as 10−4, much lower than that of RAF. This indicates a more
accurate result of TM retrieval by RAF 2-1.

Fig. 7 Focusing efficiency achieved by GGS 2-1 and RAF 2-1
under a series of iteration ratios during their two-step gradient
iterations, with 30 repeated tests.

Fig. 8 Normalized curves of error as a function of running time for
RAF and RAF 2-1 when N ¼ 576 and γ ¼ 4. Note the error bars
denote the standard deviations of 30 repeated tests.
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7 Appendix C: Accelerated Gradient
Descent for RAF

As discussed earlier, the ways to accelerate the convergence
of RAF were also studied using an adaptive step size and a more
advanced gradient-descent solver. First, we adopted the
Barzilai–Borwein method for nonmonotonic backtracking line
search of step size, which was compared with the fixed one
(μ ¼ 3). As shown in Fig. 9(a), the measurement error of using
adaptive μ drops slightly more rapidly than that of fixed μwithin
the first 20 s of running time, while the latter eventually declines
to a lower level. This shows the adaptive step size method is not
very effective, although it could be better with parameter fine-
tuning. As for the gradient-descent solver, besides the regular
steep descent (SD) using the negative first derivative (i.e., the
gradient) as the descent direction, acceleration methods, such
as NCG and L-BFGS, were employed for comparison. Since
NCG and especially L-BFGS entail more computations per
iteration than SD, for fair comparison, the curves of error as
a function of running time (instead of iterations) for different
optimization methods were compared, as shown in Fig. 9(b).
We can see that NCG has the fastest convergence with the same
running time. The reason that L-BFGS method is even slower in
the declining trend of error is attributed to the far more seconds
per iteration it requires. In fact, the average number of iterations
taken by SD, NCG, and L-BFGS are 671, 656, and 411, respec-
tively. The convergence for L-BFGS could be the fastest if com-
pared from the perspective of error decline versus iterations.
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